Retinal Blood Vessels Extraction Using Morphological Operations

Veronika Kurilová, Jarmila Pavlovičová, Miloš Oravec, Radoslav Rakár, Igor Marček

Faculty of Electrical Engineering and Information Technology Slovak University of Technology in Bratislava, Slovakia

22nd Int. Conference on System, Signals and Image Processing, 2015, London, United Kingdom, 10-12 Sept. 2015

Outline

- Introduction Diagnostic in ophtalmology
- State-of-the-art
- Image Database Messidor
- Previous work
- Image processing Mathematical morphology
- Our approach of Retinal Blood Vessel Extraction
- Results
- Conclusion and future work

Diagnostic in ophtalmology

- direct diagnostic by ophthalmologist
- screening
 - automatic evaluation of images
 - reduction of resources
 - monitoring of detected foundings

Screening of Diabetic Retinopathy (DR)

- diabetic retinopathy the leading cause of blindness
- early medication can decrease the risk of severe vision loss by > 90%
- there are no universally accepted criteria for the detection of DR using digital imaging
- British Diabetic Association reccomends minimum 80% sensitivity and **95% specificity** for screening methods*

^{*} British Diabetic Association. Retinal photographic screening for diabetic eye disease. A British Diabetic Association Report. London: British Diabetic Association; 1997 4

State-of-the-art - Extraction of blood vessels

Methods based on

- edge detection
- Canny detector or LoG operator
- wavelet transform
- classification algorithms using neural networks
- filtering algorithms
- morphological algorithms

In [*] - the comparison based on sensitivity and accuracy of five existing methods is presented **on DRIVE database**

Sensitivity values $\cong 0,7 - 0,8$ Accuracy values $\cong 0,94$

* Miri, M.S.; Mahloojifar, A., "Retinal Image Analysis Using Curvelet Transform and Multistructure Elements Morphology by Reconstruction," Biomedical Eng., IEEE Trans. on, Vol. 58, Iss. 5, pp. 1183 – 1192, 2011 5

Retinal image database Messidor *

- 1200 colour fundus images
- by 3CCD fundus camera Topcon TRC NW6
- 45° visual field
- images of healthy subjects and subjects with diabetic retinopathy
- 8 bits colour depth
- 1440x960 to 2304x1536 pixels resolution

* MESSIDOR, "Methodes d'Evaluation de Systemes de Segmentationet d'Indexation Dediees a l'Ophtalmologie Retinienne," from http://messidor.crihan.fr., 2007

Retinal image database Messidor

in our analysis:

- 1373x1372 pixel array
- green channel

lesions marked by ophthalmologist

blood vessels marked by ophthalmologist

green channel

Previous work

- image normalization luminance normalization, contrast enhancement
- optic disc suppresion (Hough transform, FRST)
- retinal blood vessels suppresion mathematical morphology
- soft exudates feature extraction on fundus images
- soft exudates classification by NN (trained for 16 selected features)

Image normalization

 $I(x,y) = f(I^{0}(x,y)) = C(x,y)I^{0}(x,y) + L(x,y)$

I(x,y) – original image

 $I^{0}(x,y)$ – ideal image

 $f(I^0(x,y))$ – transformed image

- C(x,y) contrast variation parameter
- L(x,y) luminance variation

 $L'(x, y), \hat{C}(x, y)$ - estimation of parameters based on μ and σ of background

- luminance normalization
- contrast enhancement

$$\hat{I}^{0}(x,y) = \frac{I(x,y) - L'(x,y)}{\hat{C}(x,y)}$$

M. FORACCHIA, E. GRISAN, A.RUGGERI. Luminosity and Contrast Normalization in Retinal Images. Medical Image Analysis, 2004, vol. 9, pp. 179-190

Morphological operations for blood vessel detection

- dilation, erosion, opening, closing
- white top hat bright details

 $WTH = X - (X \circ B)$

black top hat – dark details

 $BTH = (X \bullet B) - X$

morphological reconstruction –the intensity fluctuations removal

Morphological Blood Vessel Detection – Approach I

- 1) Green channel extracion
- 2) Morphological closing, SE disc size 10
- 3) Sum of images 1) and 2)
- 4) Morphological closing, SE disc size 4
- 5) Contrast adjustment
- 6) Morphological closing SE disc size 10
- 7) Subtraction of the image 5) from image 6)
- 8) Binary conversion of the image
- 9) Morphological closing, SE disc size 2

ophtalmologist

Approach

Morphological Blood Vessel Detection - Approach II

4)

5)

6)

7)

8)

9)

- two-channel processing
- combination of profitable results

- Image pre-processing Morphological opening Morphological reconstruction 3) Image sharpening 4) Image sharpening SE Disc, size 5 SE Disc, size 6 Morphological closing 5) Morphological closing SE Octagon, size 12 SE Disc, size 6 Subtraction of image 6) Subtraction of image 5) from 4) 5) from 4) Graythresholding Graythresholding 7) Morpfological opening 8) Morpfological opening SE linear, size 10 SE linear, size 10 Area opening function Area opening function 9)
 - 10) Combination of results
 - 11) Postprocessing

Results

Approach I

accuracy of hand-marked pixels			
TP (pixels)	84.86%		
FPR (pixels)	4.16%		
FN (pixels)	15.14%		

ophtalmologist:	160 092 pixels		
Approach I :	207748 pixels		
TP: 135 856			
FP: 71 892			
FN: 24 2	36		

Approach II two-channel processing

accuracy of hand-	marked pixels	
	80.52%	
FPR (pixels)	1.82%	
FN (pixels)	19,48%	
ophtalmologist:	160 092 pixels	
Approach II :	160465 pixels	
TP: 128	901	
FP: 31 564		
FN: 31 191		

RESULTS OF APPROACH I

RESULTS OF APPROACH II

2 - CHANNEL PROCESSING

Image	Sensitivity	Specificity	Accuracy	Image	Sensitivity	Specificity	Accuracy
	(TPR)	(TNR)	(ACC)		(TPR)	(TNR)	(ACC)
1	77.70%	98.03%	96.94%	1	80.72%	97.55%	96.64%
2	72.68%	96.54%	94.90%	2	77.29%	95.43%	94.17%
3	84.86%	95.84%	94.90%	3	80.52%	97.24%	95.82%
Average	78.41%	95.85%	95.58%	Average	79.51%	96.74%	95.55%

```
TPR = TP/(TP + FN)

TNR = TN/(FP + TN)

ACC = (TP + TN)/(TP + TN + FN + FP)

FPR = FP/(FP + TN)
```

Conclusion

Our approaches - sensitivity (TPR) 79.51% and accuracy 95.55% in average;

- higher in most cases despite of used datab. Messidor (higher resolution of images then DRIVE)

COMPARISON OF PERFORMANCE BETWEEN THE RECENT STUDIES
DRIVE database

Method	TPR	FPR	Average Accuracy
Mendonça et al. [3]	0.7344	0.0236	0.9452
Staal <i>et al</i> . [22]	0.6780	0.0170	0.9441
Martinez-Perez et al. [23]	0.7246	0.0345	0.9344
Niemeijer et al. [20]	0.6898	0.0304	0.9416
Our method	0.7352	0.0205	0.9458

Miri, M.S.; Mahloojifar, A., "Retinal Image Analysis Using Curvelet Transform and Multistructure Elements Morphology by Reconstruction," Biomedical Eng., IEEE Trans. on, Vol. 58, Iss. 5, pp. 1183 – 1192, 2011 15

Conclusion - Specific false positive detections

- the border of bigger retinal arteries looks darker than its lumen
- have no negative influence to pathological retinal findings detection

 some degree of noise on the border of blood vessels

Conclusion

Presented methods

- fast and easy to implement
- suitable for physiological and also pathological images of any size
- satisfies the recommendation of min. specificity for screening (95%)
- sensitivity near recomended 80 %
- Two-channel processing higher values of sensitivity and specificity in average

Improvements need to be developed in

- image normalization
- number of false positive detections

Tested images

References

- T. Walter, C.J. Klein, "Segmentation of colour fundus images of the human retina: detection of the optic disc and the vascular tree using morphological techniques," Medical Data Analysis, LNCS, vol.2199, pp.282-287, 2001.
- V. Hanúsková, J.Pavlovičová, M.Oravec, R.Blaško, "Diabetic rethinopathy screening by bright lesions extraction from fundus images," Journal of Electrical Engineering, vol. 64, no.5, pp. 311-316, 2013.
- Y. Doaa, H.S. Nahed," Accurate detection of blood vessels improves the detection of exudates in color fundus images, " Computer methods and programs in biomedicine 108, pp.1052-1061, 2012.
- M.Lalonde, L.Gagnony, C.M.Boucherz, "Non-recursive paired tracking for vessel extraction from retinal images," Conf. Vision Interface, 2000.
- L. Sukkaew, B. Uyyanonvara, "Automated vessels detection on infant retinal images, " ICCAS, Bangkok, 2004.
- J.J.G. Leandro, M.R. Cesar JR, H.F. Jelinek, "Blood vessels segmentation in retina: preliminary assessment of the mathematical morphology and the wavelet transphorm techniques," Computer Graphics and Image Processing, IEEE, pp.84-90, 2001.
- Ch. Yao, H. Chen, "Automated retinal blood vessels segmentation based on simplified PCNN and fast 2D-Otsu algorithm," Journal of Central South University of Technology, issue 4, vol.16, pp.640-646, 2009.
- J. Odstrčilík, "Improvement of vessel segmentation by matched filtering in colour retinal images," <u>World congress on medical physics and biomedical eng.</u>, <u>Munich, IFMBE Proc.</u>, vol. 25/11, p.p 327-330, 2009.
- F. Zana, J.C. Klein, "Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation," IEEE Transactions on Image Processing, vol.10, no.7, pp. 1010-1019, 2001.
- B. Fang, W. HSU, M.L. Lee, "Reconstruction of vascular structures in retinal images," Image Proc., ICIP 2003, IEEE, pp.157-160, 2003.
- J. Hajer, H. Kamel, E. Noureddine, "Blood vessels segmentation in retina image using mathematical morphology and the STFT analysis," Inf. and comm. technologies, IEEE, 2nd, vol.1, pp.1130-1134, 2006.
- J. Xu, H. Ishikawa, G. Wollstein, J.Schuman," Retinal vessel segmentation in SLO image," Engineering in medicine and biology society, Conference IEEE, Vancouver, pp.2258-2261, 2008.
- Miri, M.S.; Mahloojifar, A., "Retinal Image Analysis Using Curvelet Transform and Multistructure Elements Morphology by Reconstruction," Biomedical Eng., IEEE Trans. on, Vol. 58, Iss. 5, pp. 1183 – 1192, 2011.
- Foracchia, M., Grisan, E., Ruggeri, A., "Luminosity and Contrast Normalization in Retinal Images," Medical Image Analysis, vol.9, pp.179-190, 2004.
- R. C. Gonzalez), R.E. Woods , Digital Image Processing, 3rd ed., by Pearson Education, Inc., 2008.
- MESSIDOR, "Methodes d'Evaluation de Systemes de Segmentationet d'Indexation Dediees a l'Ophtalmologie Retinienne," from http://messidor.crihan.fr., 2007.